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1. INTRODUCTION AND STATEMENT OF RESULTS

If P(z) is a polynomial of degree n such that Maxlzi = I IP(z)1 = 1, then

and

Max 1P'(z)1 ~n
Izl = I

Max IP(z)1 ~ Rn
•

Izl =R> I

(1)

(2)

Inequality (1) is an immediate consequence of S. Bernstein's theorem
on the derivative of a trigonometric polynomial (for reference see [9J).
Inequality (2) is a simple deduction from the Maximum Modulus Principle
(see [8, p. 346J or [7, p. 158, Problem III, p.269J).

If we restrict ourselves to the class of polynomials having no zero in the
disk Izl < 1, then the inequality (1) can be sharpened. In fact, P. Erdos
conjectured and later P. D. Lax [4J proved that if P(z)#O in Izi < 1, then
(1) can be replaced by

n
Max 1P'(z)1 ~-2'
Izi = I

(3 )

Ankeny and Rivlin [3J used (3) to prove that if IP(z)1 ~ 1 for Izi = 1 and
P(z) #0 in Izi < 1, then

Rn + 1
Max IP(z)\ ~-2-'

Izi =R> I

In both (3), (4) equality holds for P(z)=a+pzn where lal = IPI =!.
183

(4)

0021-9045/88 S3.OO
Copyright © 1988 by Academic Press, Inc.

AU rights of reproduction in any form reserved.



184 ABDUL AZIZ

Let D~P(z) denote the polar differentiation of the polynomial P(z) of
degree n with respect to the point a, then

D ~ P(z ) = nP(z ) + (a - z) P' (z ).

The polynomial D ~ P(z) is of degree at most n - 1 and it generalizes the
ordinary derivative. Now corresponding to a given nth degree polynomial
P(z), we construct a sequence of polar derivatives

D~,P(z) = nP(z) + (a l - z) P'(z),

D~, .··D~kP(z)=(n-k+l)D~1···D~k-IP(z)

+ (a k - z)(D~1 .,. D~k_1P(z))', k =2,3, ..., n.

The points ail a2 , ••• , ak> k = 1, 2, ..., n, may be equal or unequal. Like the
kth ordinary derivative p(k)(Z) of P(z), the kth polar derivative
D~I···D~kP(Z) of P(z) is a polynomial of degree n-k.

In the present paper we shall obtain several sharp inequalities concerning
the maximum modulus of the polar derivative of a polynomial P(z). We
shall first extend (3) and (4) to the polar derivatives and thereby obtain a
compact generalization of these results as well. We prove

THEOREM 1. If P(z) is a polynomial of degree n such that
Maxlzl=1 IP(z)1 = 1 and P(z) has no zeros in the disk Izl < 1, thenfor Izi ~ 1

n(n - 1)··· (n - k + 1)
ID~1 .·.D~kP(z)1 ~ 2 rial ... akzn-kl + 1}, (5)

where la; I~ 1 for all i = 1, 2, ..., k. The result is best possible and equality in
(5) holds for the polynomial P(z) = (zn + 1)/2.

The following corollary, which immediately follows from Theorem 1, is a
compact generalization of (3) and (4).

COROLLARY 1. If P(z) is a polynomial of degree n such that
Maxlzl=1 IP(z)1 = 1 and P(z) has no zeros in the disk Izi < 1, then for every
real or complex number a, with lal ~ 1, we have

for Izi ~ 1. (6)

The result is best possible and equality in (6) holds for the polynomial
P(z) =azn+ b where lal = Ibl =! and a ~ 1.

Remark 1. Dividing the two sides of (6) by a, letting a -+ 00, and
noting that

Lim D~P(z) = P'(z),
lX_ 00 r:x
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we get

185

for Izi ~ 1,

which in particular gives (3).
Next taking z = a in (6) and noting that

we obtain

for every a with lal ~ 1. This is clearly equivalent to (4).
If we write

then
D~P(z) = nP(z) + (a - z) P'(z)

= (naan +an_ dzn
-

1 + ((n -1) aan_ 1 + 2an_z)zn-Z

+ ... + (2aaz + (n -1 )adz + (aal + nao).

If the polynomial P(z) has no zeros in the disk Izi < 1, then by Theorem 1,
with k = 1, it follows that

I(naan+ an_ dzn
-

1 + ... + (2aaz + (n -1 )adz + (aa 1 + nao)1

for Izl ~ 1 and lal ~ 1. Dividing the two sides of this inequality by Izl n
-

1

and letting Izi -+ 00, we easily obtain

n
Inaan+an-ll ~-2Ial Max IP(z)1

Izl ~ 1

for every a with lal ~ 1. Choosing an argument of a suitably, we
immediately get the following interesting result.

COROLLARY 2. If P(z) = LJ=o ajz j is a polynomial of degree n which
does not vanish in the disk Izl < 1, then
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If P(z) is a self-inversive polynomial, that is if P(z) == Q(z) where Q(z) =
zn P(1/i) and Maxlzl=l IP(z)1 = 1, then [2,10]

n
Max 1P'(z)1 ~-2.
Izi = I

(7)

We shall extend (7) to the polar derivatives of P(z) by establishing the
following result.

THEOREM 2. If P(z) is a self-inverse polynomial of degree n such that
Maxlzi = 1 IP(z)/ = 1 and aI' a2 , ••• , ak are real or complex numbers, then

n(n-l)···(n-k+l)
IDa! ... DakP(z)1 ~ 2

Xrial ... akzn-kl + 1}, (8)

for Izi ~ 1 and la;1 ~ 1, i= 1,2, ..., k. The inequality (8) also holds for Izi ~ 1
and 1a; I ~ 1, i = 1, 2, ..., k. The result is best possible and equality in (8) holds
for the polynomial P(z) = (zn + 1)/2.

COROLLARY 3. IfP(z) is a self-inversive polynomial ofdegree n such that
Max Izi = 1 IP(z) I= 1, then for every real or complex number a

for Iz/ ~ 1 and lal ~ 1. (9)

The inequality (9) also holds for Izi ~ 1 and lal ~ 1. The result is best
possible and equality in (9) holds for the polynomial P(z) = (zn + 1)/2.

If

is a self-inversive polynomial of degree n, then from the second part of
Corollary 3 we have

This gives

n
IDaP(z)lz=o ~-2 Max IP(z)l,

Izi =1

n
InP(O) + aP'(O)1 ~2~~~ IP(z)l,

for lal ~ 1.

for 10:1 = 1.
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n
Inao + aall ~-2 Max jP(z)l,

Izl= I
for lal = 1.

Choosing now an argument of a suitably we obtain the following result.

COROLLARY 4. If P(z) = L;~o ajzi is a self-inversive polynomial of
degree n, then

As a generalization of (3), it was shown by Malik [5] that if P(z) is a
polynomial of degree n such that jP(z)1 ~ 1 for Izi ~ 1 and P(z) has no
zeros in the disk Izi < k where k ~ 1, then

, n
MaxIP(z)I~-lk'
Izl=1 +

(10)

Here we shall extend (10) to the polar derivatives of P(z) and thereby give
an independent proof of (10) as well. We prove

THEOREM 3. If P(z) is a polynomial of degree n such that
Maxlzi = 1 1P(z)\ = 1 and P(z) has no zeros in the disk Izi < k where k ~ 1,
then for every real or complex number /3, with 1/3\ ~ 1,

{
k+ I/3I}Max IDpP(z)/ ~n -1k .

Izl=1 +
(11)

The result is best possible and equality in (11) holds for the polynomial
P(z) = (z +kt/(l +kt with a real number /3 ~ 1 and k ~ 1.

2. LEMMAS

For the proofs of these theorems we need the following lemmas.

LEMMA 1. If all the zeros of an nth degree polynomial P(z) lie in a
circular region C and if none of the points a1, az, ..., ak lie in the region C,
then each of the polar derivatives

k = 1,2, ..., n - 1,

has all of its zeros in C.
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This follows by repeated application of Laguerre's theorem (see [1] or
[6. p. 52]).

LEMMA 2. If P(z) is a polynomial of degree n such that
Max1zl=1 IP(z)1 = 1 and al. a2 • ...• ab k~n-l. are complex numbers with
la; I~ 1 for all i = 1,2, ..., k, then for Izi ~ 1,

ID~l .. .D~kP(z)1 + ID~l .. .D~kQ(z)1

~n(n-1) ... (n-k+l){la, ···akllzln-k+1}. (12)

where Q(z)=zn P(1/i).

Proof of Lemma 2. For any complex number /3. 1/31> 1, the polynomial
F(z) =P(z) - /3zn has all its zeros in Izl < 1. Therefore, the polynomial

G(z) = zn F( l/i) = zn P(1/i) -/I= Q(z)-/I

has all its zeros in Izi > 1 and

IG(z)1 ~ IF(z)l, for Izi ~ 1. (13 )

It follows by Rouche's theorem that for every a, lal > 1, the polynomial
G(z)-aF(z) has all its zeros in Izi < 1, which implies by Lemma 1 that for
complex numbers aI' a2, ..., ab la; I~ 1, 1~ i ~ k, the polynomial

D~l D~2 ···D~k(G(z)-aF(z))

has all its zeros in /zl < 1, which is equivalent to

ID~l ··.D~kG(z)1~ ID~l ···D~J(z)l, for Izi ~ 1. (14)

Inequality (14) is clearly equivalent to

ID~l ··.D~kQ(z)-n(n-l)... (n-k+l)/I1

~ ID~l ... D~kP(Z) - /3n(n-1)

... ·(n-k+l)a,a2 · .. ak zn - kl (15)

for Izi ~ 1. If P(z) is a polynomial of degree n, then for lal ~ 1,

ID~ p(z)1 = Inp(z) + (a - z) p'(z)1

~ Inp(z)-zp'(z)1 + lallp'(z)1

~ lal (Inp(z) - zp'(z)1 + Ip'(z)I),

which implies for Izi = 1 and lal ~ 1 that [2, Lemma 2]

ID~p(z)1 ~ lal n Max Ip(z)l.
Izl = I
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If we apply the above result repeatedly to the polynomial P(z), we get for
Izi = 1,

from which it follows by the maximum modulus principle that for Izi ~ 1,

In view of (16) we can choose an argument of P in (15) such that for
Izi ~ 1,

ID"I ... D"kQ(z)l-n(n-l)···(n-k+ 1) IPI

~IPln(n-l)· .. (n-k+l)lal···akllzln-k-ID"I···D"kP(z)l. (17)

Now letting IPI-+ 1 in (17), the lemma follows.

For the proof of Theorem 2 we need the following lemma, the proof of
which is omitted altogether because it follows along the same lines as that
of Lemma 2.

LEMMA 3. If P(z) is a polynomial of degree n such that
Maxlzl~1 IP(z)1 = 1 and aI' a2' ..., ab k~n-l, are complex numbers with
la i I~ 1 for all i = 1, 2, ..., k, then for Izi ~ 1,

ID"I D"2 .. ·D"kP(z)1 + ID"I D"2 .·.D"kQ(z)1

~n(n-l) ... (n-k+l){lala2 .. ·akllzln~k+1}, (18)

where Q(z) = zn P(1/i).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Since the polynomial P(z) has all its zeros in
Izi ~ 1, therefore, for every complex number P such that IPI > 1, the
polynomial P(z) - PQ(z), where Q(z) = zn P(1/i), has all its zeros in Izi ~ 1.
So that if r> 1, then the polynomial P(rz) - pQ(rz) has all its zeros in
Izl ~ l/r < 1. It then follows by Lemma 1 that if aI' a2 , •••, ak are complex
numbers such that la i I~ 1, 1~ i ~ k, the polynomial

has all its zeros in Izl < 1, which implies that all the zeros of
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lie in Izi < 1 for every Pwith IPI > 1. This clearly implies that for Izi ~ 1

ID~, D~2 ... D~kP(rz)1 ~ ID~1 D~2 ... D~kQ(rz)l. (19)

Letting r --+ 1 in (19) and using continuity we obtain for Izi ~ 1,

(20)

and the proof of the Theorem 1 follows on combining (20) with Lemma 2.

Proof of Theorem 2. Since P(z) is a self-inversive polynomial, we have

P(z)=Q(z)=zn P(ljZ).

Therefore, for all complex numbers cx I' CX2, ... , CX kl it follows that

(21 )

Using (21) in the conclusion of Lemma 2, we obtain

2 ID~l D~2 ... D~kP(z)1

~ n(n -1) .. · (n -k + 1){lcxlcx2 ... cxkllzln-k + I} (22)

for Izi ~ 1 where Icx i I ~ 1 for all i = 1, 2, ..., k.
Next using (21) in the conclusion of Lemma 3, we get

21D~1 D~2" .D~kP(z)1

~n(n-1) ... (n-k+1){lcxlcx2 ",cxkllzln-k+1} (23)

for Izi ~ 1 where Icx i I ~ 1 for all i = 1, 2, ..., k.
(22) and (23) are equivalent to the assertions of Theorem 2 and this'

completes the proof.

Proof of Theorem 3. If IPI = 1, then the result follows from the
Lemma 2 of [2]. Hence we suppose that IPI > 1. If Q(z) = zn P(l/i), then

Q'(z)=nzn-I P(1/i)-zn-2 P'(l/i),

so that for points z = eill, 0 ~ (J < 2n, we have

ID~Q(eill)1 = InQ(e ill ) + (cx - eill ) Q'(eill)1

= Ineinll P(ei8 )+ (cx _ eill)(nei(n -1)11 P(ei8 ) _ ei(n-2)1I P'(ei8 ))I

= \ncxei(n -1)11 P(ei8 ) _ (cx _ eill ) ei(n - 2)11 P'(ei8 )1

= IniXP(e ill )- (iXe ill - 1) P'(eill)l.
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ID(XQ(z)1 = InaP(z) + (1- az) P'(z)l, for Izi = 1. (24)

Since P(z) has all its zeros in Izi ~ k ~ 1, therefore, the polynomial
G(z) = P(kz) has all its zeros in Izi ~ 1. Hence if H(z) = zn G(l/i), then it
follows from (20) that

IDpG(z)1 ~ IDpH(z)l, for Izi = 1 and IPI > 1.

This gives with the help of (24) that

IDpG(z)1 ~ Inp G(z) + (1 - pz) G'(z)1

= IPllnG(z) + ((liP) - z) G'(z)l, for Izl = 1. (25)

Since IPI > 1, it follows by Lemma 1 that all the zeros of

D 1/ II G(z) = nG(z) + ((liP) - z) G'(z)

lie in Izi ~ 1. Hence by the maximum modulus principle, the inequality (25)
holds for Izl ~ 1 also. Replacing G(z) by P(kz), we obtain

1nP(kz ) + (p - z) kP' (kz )1

~ InpP(kz) + (1 - pz) kP'(kz )1, for Izi ~ 1.

Taking in particular z = eiolk, 0 ~ e< 2n, k ~ 1, we get

This implies

InP(z) + (Pk - z) P'(z)1 ~ Inp P(z) + (k - pz) P'(z)l,

which gives with the help of (24) that

for Izl = 1,

IDpk P(z)1 ~k IDp/k Q(z)l, for Izl = 1. (26)

Now from Lemmas 2 and 3, it easily follows that for every complex
number b we have

IDaP(z)1 + IDaQ(z)1 ~n(l + 1<51), for Izi = 1.
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We take in particular () = P/k and from (26) we get

(1 + k) IDpP(z)1 = IDpkP(z) + k Dp/kP(z)1

~ IDpkP(z)1 + k IDp/kP(z)1

~k{IDp/kQ(z)1 + IDp/kP(z)l}

~kn(1 + IPI/k)

=n(k + IPI), for Izi = 1,

which immediately gives (11) and Theorem 3 is proved.

Remark 2. If P(z) = ao + alz + ... + anzn is a polynomial of degree n
and Q(z) = zn P(1/Z), then by Lemma 3, with k = 1, we get

ID~P(z)lz~o + ID~Q(z)lz~o ~n Max IP(z)1
Izi ~ 1

for every rx with Irxl ~ 1. This implies

InP(O) + rxP'(O)1 + InQ(O) + rxQ'(O)1 ~ n Max IP(z)l.
Izl = 1

Equivalently,

Inao + rxall + Inan+ iian_11 < n Max IP(z)1
Izl~ 1

(27)

for every rx with Irxl ~ 1. For rx = 0, (27) reduces to a resuit due to C. Visser
[11].
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