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1. INTRODUCTION AND STATEMENT OF RESULTS

If P(z) is a polynomial of degree »n such that Max, _, |P(z)| =1, then

Max |P'(z)| <n (1)
lz] =1 .
and
Max |P(z)| <R" (2)
|zl =R>1

Inequality (1) is an immediate consequence of S. Bernstein’s theorem
on the derivative of a trigonometric polynomial (for reference see [9]).
Inequality (2) is a simple deduction from the Maximum Modulus Principle
(see [8, p.346] or [7, p. 158, Problem III, p. 269]).

If we restrict ourselves to the class of polynomials having no zero in the
disk |z| <1, then the inequality (1) can be sharpened. In fact, P. Erdos
conjectured and later P. D. Lax [4] proved that if P(z)#0 in |z] < 1, then
(1) can be replaced by

Max |P'(z)| <

Izl =1

(3)

S

Ankeny and Rivlin [3] used (3) to prove that if |P(z)| <1 for |z| =1 and
P(z)#0in |z| <1, then
Max |P(z)|<R2+1. 4)

lzl=R>1

In both (3), (4) equality holds for P(z)= o+ fz" where |a| = || =1.
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Let D, P(z) denote the polar differentiation of the polynomial P(z) of
degree n with respect to the point «, then

D, P(z)=nP(z)+ (x—z) P'(2).

The polynomial D, P(z) is of degree at most n—1 and it generalizes the
ordinary derivative. Now corresponding to a given nth degree polynomial
P(z), we construct a sequence of polar derivatives

Dqu(z)=nP(z)+(al —Z) P’(Z)a
D, ---D,Piz)=(n—k+1)D,, ---D,,_ P(z)
+ (o —2)( Dy, --- Dy, P(2)), k=2,3,..,n

The points «,, ®,, ..., o, k=1, 2, .., n, may be equal or unequal. Like the
kth ordinary derivative P%*)(z) of P(z), the kth polar derivative
D, ---D, P(z) of P(z) is a polynomial of degree n— k.

In the present paper we shall obtain several sharp inequalities concerning
the maximum modulus of the polar derivative of a polynomial P(z). We
shall first extend (3) and (4) to the polar derivatives and thereby obtain a
compact generalization of these results as well. We prove

THEOREM 1. If P(z) is a polynomial of degree n such that
Max,, _ |P(z)| = 1 and P(z) has no zeros in the disk |z| <1, then for |z| > 1
nn—1)---(n—k+1)

2

where |a;| =1 for all i=1, 2, ..., k. The result is best possible and equality in
(5) holds for the polynomial P(z)= (z"+ 1)/2.

|D,, - D, P(z)] < {lay o 2" %+ 1}, (5)

The following corollary, which immediately follows from Theorem 1, is a
compact generalization of (3) and (4).

CorOLLARY 1. If P(z) is a polynomial of degree n such that
Max ., _, |P(z)| =1 and P(z) has no zeros in the disk |z| <1, then for every
real or complex number a, with |a| = 1, we have

IDP() <5 (laz" Y| +1),  for [2>1. (6)
The result is best possible and equality in (6) holds for the polynomial
P(z)=az"+ b where |a| = |b| =1 and a > 1.

Remark 1. Dividing the two sides of (6) by a, letting « — oo, and
noting that

Li

ox-— 0

m 22O
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we get
PEISSI, for 21,
which in particular gives (3).
Next taking z=« in (6) and noting that
{D,P(z)}._, =nP(a),
we obtain
n |P@)| <3 (el +1)
for every a with |a| > 1. This is clearly equivalent to (4).
If we write
P(z)=a,z"+a, 2" '4+a, 2" *+ --- +a,z>+a,z+a,,

then
D, P(z)=nP(z)+ (x—2z) P'(2)

=(naa,+a, )" '+ ((n—1)aa, ,+2a,_,)z""?
+ - +(2aa, + (n—1)a,)z + (aa, + nay,).

If the polynomial P(z) has no zeros in the disk |z| < 1, then by Theorem 1,
with k =1, it follows that

l(naa, +a, ;)z" "'+ - + (204, + (n—1)a,)z + (ea, +nao)|

<3 {lal |21"~ + 1} Max | P(2),

for |z] > 1 and |«| > 1. Dividing the two sides of this inequality by |z|"~*
and letting |z| — o0, we easily obtain

n
|naa, +a,_,| <3 o] Mi_vl( |P(2)]

for every a with |a|>1. Choosing an argument of o suitably, we
immediately get the following interesting result.

COROLLARY 2. If P(z)=zj'.'=0ajz" is a polynomial of degree n which
does not vanish in the disk |z| <1, then

n

nla,l+la,_ 1<
2] + 12,11 <3

Max | P(z)|.
lz| =1
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If P(z) is a self-inversive polynomial, that is if P(z)= Q(z) where Q(z) =
z" P(1/Z) and Max,,_, |P(z)] = 1, then [2, 10]

Max |P'(z)| Sg. (7)

lzl=1

We shall extend (7) to the polar derivatives of P(z) by establishing the
following result,

THEOREM 2. If P(z) is a self-inverse polynomial of degree n such that
Max, _, |P(z)| =1 and a;, ay, .., o, are real or complex numbers, then

nn—1).-..(n—k+1)
2

x {Jot, -2 4+ 1}, (8)

lDal DakP(z)I <

forlzlz1land |a,| 21, i=1, 2, .., k. The inequality (8) also holds for |z| <1
and |o;| <1, i=1, 2, ..., k. The result is best possible and equality in (8) holds
for the polynomial P(z)=(z"+1)/2.

CoOROLLARY 3. If P(z) is a self-inversive polynomial of degree n such that
Max, _, |P(z)| =1, then for every real or complex number o

D, Pz <= (az""'|+1), for |zl=1 and Ja|=1. (9)

[N T

The inequality (9) also holds for |z| <1 and |a| < 1. The result is best
possible and equality in (9) holds for the polynomial P(z)=(z"+1)/2.

If
P(z)=a,z"+a,_,z" '+ - +az+a,

is a self-inversive polynomial of degree n, then from the second part of
Corollary 3 we have

ID,P(z)]. 0 sgpldax \P(z)l, for |a<1.
zi=1
This gives

InP(0) + aP'(0)] sg Max |P(z),  for lal=1.
z| =
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Equivalently,
Inao+aa,I<gMa)l(|P(z)l, for |af=1.

Choosing now an argument of o suitably we obtain the following result.

CoROLLARY 4. If P(z)=X7_,a;z’ is a self-inversive polynomial of
degree n, then

n

a a | <
nlag] +la] <3

Max | P(z)].
|zl =1

As a generalization of (3), it was shown by Malik [5] that if P(z) is a
polynomial of degree n such that |P(z)] <1 for |z| <1 and P(z) has no
zeros in the disk |z| <k where k > 1, then

n
3 S .
Max IPe)l <177

(10)

Here we shall extend (10) to the polar derivatives of P(z) and thereby give
an independent proof of (10) as well. We prove

THEOREM 3. If P(z) is a polynomial of degree n such that
Max, ., |P(z)} =1 and P(z) has no zeros in the disk |z| <k where k> 1,
then for every real or complex number f, with |f| =21,

k+lﬁ|}‘

(11)

<
Ma 10, e < { T

The result is best possible and equality in (11) holds for the polynomial
P(z)=(z+ k)"/(1 + k)" with a real number =1 and k > 1.

2. LEMMAS
For the proofs of these theorems we need the following lemmas.

LemMMa 1. If all the zeros of an nth degree polynomial P(z) lie in a
circular region C and if none of the points a,, a,, .., a, lie in the region C,
then each of the polar derivatives

D,D,  --D,P(z), k=12,..n-—1,

has all of its zeros in C.
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This follows by repeated application of Laguerre’s theorem (see [1] or
(6, p. 521).

LemMma 2. If P(z) is a polynomial of degree n such that
Max, _, |P(z)| =1 and a,, a,, .., 2, k<n—1, are complex numbers with
la;| 21 for all i=1,2, .., k, then for |z| 21,

IDal '”DakP(Z)I + IDoq "'DakQ(Z)l
Sn(n—1)---(n—k+1){lo; - a | 2" *+ 1}, (12)
where Q(z)=z" P(1/2).

Proof of Lemma 2. For any complex number f, || > 1, the polynomial
F(z)= P(z)— Bz" has all its zeros in |z| < 1. Therefore, the polynomial

G(z)=z"F(1/2)=z"P(1/2) - B=Q(2) - B

has all its zeros in |z| > 1 and
IG2)| < |F(z)l, for |z|>1. (13)

It follows by Rouche’s theorem that for every «, |«| > 1, the polynomial
G(z) — aF(z) has all its zeros in |z| < 1, which implies by Lemma 1 that for
complex numbers a,, 5, .., &, ;] =1, 1 <i<k, the polynomial

D, D,, ---D,(G(z)—aF(z))
has all its zeros in |z| < 1, which is equivalent to
|Dy, - Dy, G(2)| S |Dy, -+ - Dy F(z)l, for |z 2 1. (14)
Inequality (14) is clearly equivalent to
ID,, -+ Dy Q(z) —n(n—1)--- (n—k +1)B|
<Dy, -+ Dy P(z) — Pn(n—1)
Ce(n—k+ ) agon a2 (15)
for |z| = 1. If P(z) is a polynomial of degree », then for |a| > 1,
|D, p(2)| = np(z) + (2 —2) p'(2)|
<np(z)—zp'(2)l + |of | p'(2)]
<laf (Inp(z) — 2p’(2)1 + 1 p'(2)1),
which implies for |z] =1 and |«| =1 that [2, Lemma 2]

|D, p(z)| < |a| n Mf’f [p(z)}.



INEQUALITIES FOR POLAR DERIVATIVES 189

If we apply the above result repeatedly to the polynomial P(z), we get for
Iz =1,
|Dgy -+ Dy P(2) Sn(n—1) -~ (n—k+1) oy - axl,
from which it follows by the maximum modulus principle that for |z| > 1,
ID,, - Dy P2)| Sn(n—1)--- (n—k + 1) |ayay --- 0| 2”75 (16)

In view of (16) we can choose an argument of § in (15) such that for
lz| =21,

[Dyy - Do Q(2)| —n(n—1) -~ (n—k + 1) ||
<|Bln(n—1)---(n—k+1) oy ---a,| |z]""“ =Dy, --- Dy P(2)]. (17)
Now letting || — 1 in (17), the lemma follows.

For the proof of Theorem 2 we need the following lemma, the proof of
which is omitted altogether because it follows along the same lines as that
of Lemma 2.

LemMa 3. If P(z) is a polynomial of degree n such that
Max,, ., |P(z)| =1 and a,, a,, .., o0,, k <n—1, are complex numbers with
lo;| 1 for all i=1,2, ... k, then for |z| <1,

|Dr11 Daz "'DakP(Z)! +|sz1 szz "'DakQ(Z)l
<n(n—1)---(n—k+ Df|aya, o] |z|" ¥+ 1}, (18)

where Q(z)=z" P(1/2).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Since the polynomial P(z) has all its zeros in
|z| 2 1, therefore, for every complex number f such that || >1, the
polynomial P(z) — fQ(z), where Q(z) =z" P(1/%), has all its zeros in |z|{ < 1.
So that if r> 1, then the polynomial P(rz)—pQ(rz) has all its zeros in
|z] €1/r < 1. It then follows by Lemma 1 that if «,, «,, ..., a, are complex
numbers such that |«,| > 1, 1 <i<k, the polynomial

Dy, Dy, -+ Dy, (P(rz) — BQ(rz))

has all its zeros in |z| < 1, which implies that all the zeros of

DalDaz"'DakP(rZ)_ﬁDalDaz"'Do(kQ(rZ)
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lie in |z| <1 for every B with |B] > 1. This clearly implies that for |z| > 1
|Dy, Dy, -+ Doy P(r2)| <Dy, Dy, -+ D, Q(rz). (19)
Letting r — 1 in (19) and using continuity we obtain for |z| = 1,
|Dyy Dy -+ Doy P(2)] S |Dyy Dy, -+ D, Q(2))] (20)

and the proof of the Theorem 1 follows on combining (20) with Lemma 2.

Proof of Theorem 2. Since P(z) is a self-inversive polynomial, we have
P(z)=Q(z)=z" P(1)2).

Therefore, for all complex numbers «,, «,, ..., o, it follows that

b,D,---D,P(z)=D, D,,---D,0(z). (21)
Using (21) in the conclusion of Lemma 2, we obtain
2 |Doq Daz "'DakP(Z)i
<nn—1)---(n—k+ D{|ajo, o] |2|" %+ 1} (22)

for |z| = 1 where |o;| =21 for all i=1, 2, ..., k.
Next using (21) in the conclusion of Lemma 3, we get

2 |D11 szz “'DukP(z)‘
<a(n—1)---(n—k+ D){|aa, o, |z]" F+1} (23)

for |z| <1 where ;| <1 for all i=1, 2, .., k.
(22) and (23) are equivalent to the assertions of Theorem 2 and this’
completes the proof.

Proof of Theorem 3. If |B|=1, then the result follows from the
Lemma 2 of [2]. Hence we suppose that || > 1. If @(z) =z" P(1/Z), then

Q'(z)=nz""'P(1/z)—z""* P'(1/2),

so that for points z=e”, 0< 6 <2n, we have
1D, Q(e”)| = [nQ(e”) + (2 — ) Q'(e”)]
— |neinom+ (a__eiﬂ)(nei(n—I)B_P_(?G___ei(n—nﬂ WSN
— Inae""””em— (a__eiﬂ) eitn—2)9 P_’(e‘wjl

= |n@P(e®) — (de” — 1) P'(e")].
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This shows that

|D,0(z)] = |naP(z) + (1 — az) P'(z)|, for|z|=1. (24)

Since P(z) has all its zeros in |z| 2k =1, therefore, the polynomial
G(z)= P(kz) has all its zeros in |z| = 1. Hence if H(z)=2z" G(1/2), then it
follows from (20) that

|Dg G(z)| < |DgH(z)|, for|z|=1and|B|>1.
This gives with the help of (24) that

|DsG(2)| <nf G(2) + (1 - Bz) G'(2)|
=Bl InG(z) + ((1/B) —2) G'(z)I, for |z| =1. (25)

Since |B] > 1, it follows by Lemma 1 that all the zeros of
D5 G(z) =nG(z) +((1/B) —2) G'(2)

lie in |z| > 1. Hence by the maximum modulus principle, the inequality (25)
holds for |z| <1 also. Replacing G(z) by P(kz), we obtain

InP(kz) + (B — z) kP'(kz)|
< |nBP(kz) + (1 — Bz) kP'(kz)l,  for |z <1

Taking in particular z=¢e“/k, 0<0<2n, k> 1, we get
InP(e”) + (Bk — e”) P'(e”)| < |nf P(e”) + (k — Be®) P'(e”).
This implies
|nP(z) + (Bk — z) P'(z)| < InB P(z) + (k— Bz) P'(z)|, for |z|=1,
which gives with the help of (24) that
|Dg P(z)| <k |Dgy Q(2), for |z|=1. (26)

Now from Lemmas2 and 3, it easily follows that for every complex
number § we have

|DsP(z)| + |DsQ(z)| <n(l+ |4]), for |z|=1.
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We take in particular é = f/k and from (26) we get
(1+k)|DgP(z)| = |Dg P(z) + k Dy, P(z)]
< |Dpg P(z)| +k | Dy P(z)]
<k{IDpiQ2)] + Dy P(2)|}
<kn(1 + |Bl/k)
=n(k+|pl), for |z|=1,

which immediately gives (11) and Theorem 3 is proved.

Remark 2. If P(z)=ay+a,z+ --- +a,z" is a polynomial of degree n
and Q(z)==z" P(1/Z), then by Lemma 3, with k=1, we get

1Dy P(2)]. =0 + D Q(2)|.—0 <1 }\Zflig)l( |P(2)]

for every a with |a| < 1. This implies

[nP(0) + «P'(0)] + [nQ(0) +aQ'(0)| <n Max |P(2)].

Equivalently,

|nay +aa, | + |na, +da,_ | <n Max |P(z)| (27)
|zl=1

for every a with |a| < 1. For 2 =0, (27) reduces to a result due to C. Visser

[11].
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