Inequalities for the Polar Derivative of a Polynomial

Abdul Aziz
Postgraduate Department of Mathematics, University of Kashmir, Hazratbal Srinagar, 190006, Kashmir, India
Communicated by Oved Shisha

Received June 28, 1986; revised August 17, 1986

1. Introduction and Statement of Results

If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant R^{n} . \tag{2}
\end{equation*}
$$

Inequality (1) is an immediate consequence of \mathbf{S}. Bernstein's theorem on the derivative of a trigonometric polynomial (for reference see [9]). Inequality (2) is a simple deduction from the Maximum Modulus Principle (see [8, p. 346] or [7, p. 158, Problem III, p. 269]).
If we restrict ourselves to the class of polynomials having no zero in the disk $|z|<1$, then the inequality (1) can be sharpened. In fact, P. Erdös conjectured and later P. D. Lax [4] proved that if $P(z) \neq 0$ in $|z|<1$, then (1) can be replaced by

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant \frac{n}{2} . \tag{3}
\end{equation*}
$$

Ankeny and Rivlin [3] used (3) to prove that if $|P(z)| \leqslant 1$ for $|z|=1$ and $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant \frac{R^{n}+1}{2} . \tag{4}
\end{equation*}
$$

In both (3), (4) equality holds for $P(z)=\alpha+\beta z^{n}$ where $|\alpha|=|\beta|=\frac{1}{2}$.

Let $D_{\alpha} P(z)$ denote the polar differentiation of the polynomial $P(z)$ of degree n with respect to the point α, then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative. Now corresponding to a given nth degree polynomial $P(z)$, we construct a sequence of polar derivatives

$$
\begin{aligned}
& D_{\alpha_{1}} P(z)=n P(z)+\left(\alpha_{1}-z\right) P^{\prime}(z) \\
& D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)=(n-k+1) D_{\alpha_{1}} \cdots D_{\alpha_{k-1}} P(z) \\
& \\
& +\left(\alpha_{k}-z\right)\left(D_{\alpha_{1}} \cdots D_{\alpha_{k-1}} P(z)\right)^{\prime}, \quad k=2,3, \ldots, n .
\end{aligned}
$$

The points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, k=1,2, \ldots, n$, may be equal or unequal. Like the k th ordinary derivative $P^{(k)}(z)$ of $P(z)$, the k th polar derivative $D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)$ of $P(z)$ is a polynomial of degree $n-k$.

In the present paper we shall obtain several sharp inequalities concerning the maximum modulus of the polar derivative of a polynomial $P(z)$. We shall first extend (3) and (4) to the polar derivatives and thereby obtain a compact generalization of these results as well. We prove

Theorem 1. If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $P(z)$ has no zeros in the disk $|z|<1$, then for $|z| \geqslant 1$

$$
\begin{equation*}
\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)\right| \leqslant \frac{n(n-1) \cdots(n-k+1)}{2}\left\{\left|\alpha_{1} \cdots \alpha_{k} z^{n-k}\right|+1\right\} \tag{5}
\end{equation*}
$$

where $\left|\alpha_{i}\right| \geqslant 1$ for all $i=1,2, \ldots, k$. The result is best possible and equality in (5) holds for the polynomial $P(z)=\left(z^{n}+1\right) / 2$.

The following corollary, which immediately follows from Theorem 1, is a compact generalization of (3) and (4).

Corollary 1. If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $P(z)$ has no zeros in the disk $|z|<1$, then for every real or complex number α, with $|\alpha| \geqslant 1$, we have

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \leqslant \frac{n}{2}\left(\left|\alpha z^{n-1}\right|+1\right), \quad \text { for } \quad|z| \geqslant 1 . \tag{6}
\end{equation*}
$$

The result is best possible and equality in (6) holds for the polynomial $P(z)=a z^{n}+b$ where $|a|=|b|=\frac{1}{2}$ and $\alpha \geqslant 1$.

Remark 1. Dividing the two sides of (6) by α, letting $\alpha \rightarrow \infty$, and noting that

$$
\operatorname{Lim}_{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

we get

$$
\left|P^{\prime}(z)\right| \leqslant \frac{n}{2}|z|^{n-1}, \quad \text { for } \quad|z| \geqslant 1
$$

which in particular gives (3).
Next taking $z=\alpha$ in (6) and noting that

$$
\left\{D_{\alpha} P(z)\right\}_{z=\alpha}=n P(\alpha),
$$

we obtain

$$
n|P(\alpha)| \leqslant \frac{n}{2}\left(|\alpha|^{n}+1\right)
$$

for every α with $|\alpha| \geqslant 1$. This is clearly equivalent to (4).
If we write

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{2} z^{2}+a_{1} z+a_{0},
$$

then

$$
\begin{aligned}
D_{\alpha} P(z)= & n P(z)+(\alpha-z) P^{\prime}(z) \\
= & \left(n \alpha a_{n}+a_{n-1}\right) z^{n-1}+\left((n-1) \alpha a_{n-1}+2 a_{n-2}\right) z^{n-2} \\
& +\cdots+\left(2 \alpha a_{2}+(n-1) a_{1}\right) z+\left(\alpha a_{1}+n a_{0}\right) .
\end{aligned}
$$

If the polynomial $P(z)$ has no zeros in the disk $|z|<1$, then by Theorem 1, with $k=1$, it follows that

$$
\begin{aligned}
& \left|\left(n \alpha a_{n}+a_{n-1}\right) z^{n-1}+\cdots+\left(2 \alpha a_{2}+(n-1) a_{1}\right) z+\left(\alpha a_{1}+n a_{0}\right)\right| \\
& \quad \leqslant \frac{n}{2}\left\{|\alpha||z|^{n-1}+1\right\} \underset{|z|=1}{\operatorname{Max}}|P(z)|
\end{aligned}
$$

for $|z| \geqslant 1$ and $|\alpha| \geqslant 1$. Dividing the two sides of this inequality by $|z|^{n-1}$ and letting $|z| \rightarrow \infty$, we easily obtain

$$
\left|n \alpha a_{n}+a_{n-1}\right| \leqslant \frac{n}{2}|\alpha| \operatorname{Max}_{|z|=1}|P(z)|
$$

for every α with $|\alpha| \geqslant 1$. Choosing an argument of α suitably, we immediately get the following interesting result.

Corollary 2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in the disk $|z|<1$, then

$$
n\left|a_{n}\right|+\left|a_{n-1}\right| \leqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| .
$$

If $P(z)$ is a self-inversive polynomial, that is if $P(z) \equiv Q(z)$ where $Q(z)=$ $z^{n} \overline{P(1 / \bar{z})}$ and $\operatorname{Max}_{|z|=1}|P(z)|=1$, then $[2,10]$

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant \frac{n}{2} . \tag{7}
\end{equation*}
$$

We shall extend (7) to the polar derivatives of $P(z)$ by establishing the following result.

Theorem 2. If $P(z)$ is a self-inverse polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are real or complex numbers, then

$$
\begin{align*}
\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)\right| \leqslant & \frac{n(n-1) \cdots(n-k+1)}{2} \\
& \times\left\{\left|\alpha_{1} \cdots \alpha_{k} z^{n-k}\right|+1\right\} \tag{8}
\end{align*}
$$

for $|z| \geqslant 1$ and $\left|\alpha_{i}\right| \geqslant 1, i=1,2, \ldots, k$. The inequality (8) also holds for $|z| \leqslant 1$ and $\left|\alpha_{i}\right| \leqslant 1, i=1,2, \ldots, k$. The result is best possible and equality in (8) holds for the polynomial $P(z)=\left(z^{n}+1\right) / 2$.

Corollary 3. If $P(z)$ is a self-inversive polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$, then for every real or complex number α

$$
\begin{equation*}
\left|D_{\alpha} P(z)\right| \leqslant \frac{n}{2} \quad\left(\left|\alpha z^{n-1}\right|+1\right), \quad \text { for } \quad|z| \geqslant 1 \quad \text { and } \quad|\alpha| \geqslant 1 . \tag{9}
\end{equation*}
$$

The inequality (9) also holds for $|z| \leqslant 1$ and $|\alpha| \leqslant 1$. The result is best possible and equality in (9) holds for the polynomial $P(z)=\left(z^{n}+1\right) / 2$.

If

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

is a self-inversive polynomial of degree n, then from the second part of Corollary 3 we have

$$
\left|D_{\alpha} P(z)\right|_{z=0} \leqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)|, \quad \text { for } \quad|\alpha| \leqslant 1
$$

This gives

$$
\left|n P(0)+\alpha P^{\prime}(0)\right| \leqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)|, \quad \text { for } \quad|\alpha|=1
$$

Equivalently,

$$
\left|n a_{0}+\alpha a_{1}\right| \leqslant \frac{n}{2} \operatorname{Max}_{z \mid=1}|P(z)|, \quad \text { for } \quad|\alpha|=1
$$

Choosing now an argument of α suitably we obtain the following result.
Corollary 4. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a self-inversive polynomial of degree n, then

$$
n\left|a_{0}\right|+\left|a_{1}\right| \leqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| .
$$

As a generalization of (3), it was shown by Malik [5] that if $P(z)$ is a polynomial of degree n such that $|P(z)| \leqslant 1$ for $|z| \leqslant 1$ and $P(z)$ has no zeros in the disk $|z|<k$ where $k \geqslant 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant \frac{n}{1+k} . \tag{10}
\end{equation*}
$$

Here we shall extend (10) to the polar derivatives of $P(z)$ and thereby give an independent proof of (10) as well. We prove

Theorem 3. If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $P(z)$ has no zeros in the disk $|z|<k$ where $k \geqslant 1$, then for every real or complex number β, with $|\beta| \geqslant 1$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|D_{\beta} P(z)\right| \leqslant n\left\{\frac{k+|\beta|}{1+k}\right\} . \tag{11}
\end{equation*}
$$

The result is best possible and equality in (11) holds for the polynomial $P(z)=(z+k)^{n} /(1+k)^{n}$ with a real number $\beta \geqslant 1$ and $k \geqslant 1$.

2. Lemmas

For the proofs of these theorems we need the following lemmas.
Lemma 1. If all the zeros of an nth degree polynomial $P(z)$ lie in a circular region C and if none of the points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ lie in the region C, then each of the polar derivatives

$$
D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z), \quad k=1,2, \ldots, n-1,
$$

has all of its zeros in C.

This follows by repeated application of Laguerre's theorem (see [1] or [6, p. 52]).

Lemma 2. If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, k \leqslant n-1$, are complex numbers with $\left|\alpha_{i}\right| \geqslant 1$ for all $i=1,2, \ldots, k$, then for $|z| \geqslant 1$,

$$
\begin{align*}
\mid D_{\alpha_{1}} & \cdots D_{\alpha_{k}} P(z)\left|+\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} Q(z)\right|\right. \\
& \leqslant n(n-1) \cdots(n-k+1)\left\{\left|\alpha_{1} \cdots \alpha_{k}\right||z|^{n-k}+1\right\} \tag{12}
\end{align*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.
Proof of Lemma 2. For any complex number $\beta,|\beta|>1$, the polynomial $F(z)=P(z)-\beta z^{n}$ has all its zeros in $|z|<1$. Therefore, the polynomial

$$
G(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(1 / \bar{z})}-\bar{\beta}=Q(z)-\bar{\beta}
$$

has all its zeros in $|z|>1$ and

$$
\begin{equation*}
|G(z)| \leqslant|F(z)|, \quad \text { for } \quad|z| \geqslant 1 . \tag{13}
\end{equation*}
$$

It follows by Rouche's theorem that for every $\alpha,|\alpha|>1$, the polynomial $G(z)-\alpha F(z)$ has all its zeros in $|z|<1$, which implies by Lemma 1 that for complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k},\left|\alpha_{i}\right| \geqslant 1,1 \leqslant i \leqslant k$, the polynomial

$$
D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}}(G(z)-\alpha F(z))
$$

has all its zeros in $|z|<1$, which is equivalent to

$$
\begin{equation*}
\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} G(z)\right| \leqslant\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} F(z)\right|, \quad \text { for }|z| \geqslant 1 . \tag{14}
\end{equation*}
$$

Inequality (14) is clearly equivalent to

$$
\begin{align*}
\mid D_{\alpha_{1}} & \cdots D_{\alpha_{k}} Q(z)-n(n-1) \cdots(n-k+1) \bar{\beta} \mid \\
\leqslant & \mid D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)-\beta n(n-1) \\
& \cdots(n-k+1) \alpha_{1} \alpha_{2} \cdots \alpha_{k} z^{n-k} \mid \tag{15}
\end{align*}
$$

for $|z| \geqslant 1$. If $P(z)$ is a polynomial of degree n, then for $|\alpha| \geqslant 1$,

$$
\begin{aligned}
\left|D_{\alpha} p(z)\right| & =\left|n p(z)+(\alpha-z) p^{\prime}(z)\right| \\
& \leqslant\left|n p(z)-z p^{\prime}(z)\right|+|\alpha|\left|p^{\prime}(z)\right| \\
& \leqslant|\alpha|\left(\left|n p(z)-z p^{\prime}(z)\right|+\left|p^{\prime}(z)\right|\right),
\end{aligned}
$$

which implies for $|z|=1$ and $|\alpha| \geqslant 1$ that [2, Lemma 2]

$$
\left|D_{\alpha} p(z)\right| \leqslant|\alpha| n \underset{|z|=1}{\operatorname{Max}}|p(z)| .
$$

If we apply the above result repeatedly to the polynomial $P(z)$, we get for $|z|=1$,

$$
\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)\right| \leqslant n(n-1) \cdots(n-k+1)\left|\alpha_{1} \cdots \alpha_{k}\right|
$$

from which it follows by the maximum modulus principle that for $|z| \geqslant 1$,

$$
\begin{equation*}
\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)\right| \leqslant n(n-1) \cdots(n-k+1)\left|\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right||z|^{n-k} \tag{16}
\end{equation*}
$$

In view of (16) we can choose an argument of β in (15) such that for $|z| \geqslant 1$,

$$
\begin{align*}
\mid D_{\alpha_{1}} & \cdots D_{\alpha_{k}} Q(z)|-n(n-1) \cdots(n-k+1)| \beta \mid \\
& \leqslant|\beta| n(n-1) \cdots(n-k+1)\left|\alpha_{1} \cdots \alpha_{k}\right||z|^{n-k}-\left|D_{\alpha_{1}} \cdots D_{\alpha_{k}} P(z)\right| . \tag{17}
\end{align*}
$$

Now letting $|\beta| \rightarrow 1$ in (17), the lemma follows.
For the proof of Theorem 2 we need the following lemma, the proof of which is omitted altogether because it follows along the same lines as that of Lemma 2.

Lemma 3. If $P(z)$ is a polynomial of degree n such that $\operatorname{Max}_{|z|=1}|P(z)|=1$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, k \leqslant n-1$, are complex numbers with $\left|\alpha_{i}\right| \leqslant 1$ for all $i=1,2, \ldots, k$, then for $|z| \leqslant 1$,

$$
\begin{align*}
& \left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z)\right|+\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} Q(z)\right| \\
& \quad \leqslant n(n-1) \cdots(n-k+1)\left\{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right||z|^{n-k}+1\right\} \tag{18}
\end{align*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.

3. Proofs of the Theorems

Proof of Theorem 1. Since the polynomial $P(z)$ has all its zeros in $|z| \geqslant 1$, therefore, for every complex number β such that $|\beta|>1$, the polynomial $P(z)-\beta Q(z)$, where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, has all its zeros in $|z| \leqslant 1$. So that if $r>1$, then the polynomial $P(r z)-\beta Q(r z)$ has all its zeros in $|z| \leqslant 1 / r<1$. It then follows by Lemma 1 that if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are complex numbers such that $\left|\alpha_{i}\right| \geqslant 1,1 \leqslant i \leqslant k$, the polynomial

$$
D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}}(P(r z)-\beta Q(r z))
$$

has all its zeros in $|z|<1$, which implies that all the zeros of

$$
D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(r z)-\beta D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} Q(r z)
$$

lie in $|z|<1$ for every β with $|\beta|>1$. This clearly implies that for $|z| \geqslant 1$

$$
\begin{equation*}
\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(r z)\right| \leqslant\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} Q(r z)\right| . \tag{19}
\end{equation*}
$$

Letting $r \rightarrow 1$ in (19) and using continuity we obtain for $|z| \geqslant 1$,

$$
\begin{equation*}
\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z)\right| \leqslant\left|D_{x_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} Q(z)\right| \tag{20}
\end{equation*}
$$

and the proof of the Theorem 1 follows on combining (20) with Lemma 2.
Proof of Theorem 2. Since $P(z)$ is a self-inversive polynomial, we have

$$
P(z) \equiv Q(z)=z^{n} \overline{P(1 / \bar{z})} .
$$

Therefore, for all complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$, it follows that

$$
\begin{equation*}
D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z)=D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} Q(z) . \tag{21}
\end{equation*}
$$

Using (21) in the conclusion of Lemma 2, we obtain

$$
\begin{align*}
& 2\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z)\right| \\
& \quad \leqslant n(n-1) \cdots(n-k+1)\left\{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right||z|^{n-k}+1\right\} \tag{22}
\end{align*}
$$

for $|z| \geqslant 1$ where $\left|\alpha_{i}\right| \geqslant 1$ for all $i=1,2, \ldots, k$.
Next using (21) in the conclusion of Lemma 3, we get

$$
\begin{align*}
& 2\left|D_{\alpha_{1}} D_{\alpha_{2}} \cdots D_{\alpha_{k}} P(z)\right| \\
& \quad \leqslant n(n-1) \cdots(n-k+1)\left\{\left|\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right||z|^{n-k}+1\right\} \tag{23}
\end{align*}
$$

for $|z| \leqslant 1$ where $\left|\alpha_{i}\right| \leqslant 1$ for all $i=1,2, \ldots, k$.
(22) and (23) are equivalent to the assertions of Theorem 2 and this completes the proof.

Proof of Theorem 3. If $|\beta|=1$, then the result follows from the Lemma 2 of [2]. Hence we suppose that $|\beta|>1$. If $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then

$$
Q^{\prime}(z)=n z^{n-1} \overline{P(1 / \bar{z})}-z^{n-2} \overline{P^{\prime}(1 / \bar{z})},
$$

so that for points $z=e^{i \theta}, 0 \leqslant \theta<2 \pi$, we have

$$
\begin{aligned}
\left|D_{\alpha} Q\left(e^{i \theta}\right)\right| & =\left|n Q\left(e^{i \theta}\right)+\left(\alpha-e^{i \theta}\right) Q^{\prime}\left(e^{i \theta}\right)\right| \\
& =\left|n e^{i n \theta} \overline{P\left(e^{i \theta}\right)}+\left(\alpha-e^{i \theta}\right)\left(n e^{i(n-1) \theta} \overline{P\left(e^{i \theta}\right)}-e^{i(n-2) \theta} \overline{P^{\prime}\left(e^{i \theta}\right)}\right)\right| \\
& =\mid n \alpha e^{i(n-1) \theta} \overline{P\left(e^{i \theta}\right)}-\left(\alpha-e^{i \theta}\right) e^{i(n-2) \theta} \overline{P^{\prime}\left(e^{i \theta}\right) \mid} \\
& =\left|n \bar{\alpha} P\left(e^{i \theta}\right)-\left(\bar{\alpha} e^{i \theta}-1\right) P^{\prime}\left(e^{i \theta}\right)\right| .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\left|D_{\alpha} Q(z)\right|=\left|n \bar{\alpha} P(z)+(1-\bar{\alpha} z) P^{\prime}(z)\right|, \quad \text { for }|z|=1 . \tag{24}
\end{equation*}
$$

Since $P(z)$ has all its zeros in $|z| \geqslant k \geqslant 1$, therefore, the polynomial $G(z)=P(k z)$ has all its zeros in $|z| \geqslant 1$. Hence if $H(z)=z^{n} \overline{G(1 / \bar{z})}$, then it follows from (20) that

$$
\left|D_{\beta} G(z)\right| \leqslant\left|D_{\beta} H(z)\right|, \quad \text { for }|z|=1 \text { and }|\beta|>1 .
$$

This gives with the help of (24) that

$$
\begin{align*}
\left|D_{\beta} G(z)\right| & \leqslant\left|n \bar{\beta} G(z)+(1-\bar{\beta} z) G^{\prime}(z)\right| \\
& =|\beta|\left|n G(z)+((1 / \bar{\beta})-z) G^{\prime}(z)\right|, \quad \text { for }|z|=1 . \tag{25}
\end{align*}
$$

Since $|\beta|>1$, it follows by Lemma 1 that all the zeros of

$$
D_{1 / \bar{\beta}} G(z)=n G(z)+((1 / \bar{\beta})-z) G^{\prime}(z)
$$

lie in $|z| \geqslant 1$. Hence by the maximum modulus principle, the inequality (25) holds for $|z| \leqslant 1$ also. Replacing $G(z)$ by $P(k z)$, we obtain

$$
\begin{aligned}
& \left|n P(k z)+(\beta-z) k P^{\prime}(k z)\right| \\
& \quad \leqslant \ln \bar{\beta} P(k z)+(1-\bar{\beta} z) k P^{\prime}(k z) \mid, \quad \text { for } \quad|z| \leqslant 1 .
\end{aligned}
$$

Taking in particular $z=e^{i \theta} / k, 0 \leqslant \theta<2 \pi, k \geqslant 1$, we get

$$
\left|n P\left(e^{i \theta}\right)+\left(\beta k-e^{i \theta}\right) P^{\prime}\left(e^{i \theta}\right)\right| \leqslant\left|n \bar{\beta} P\left(e^{i \theta}\right)+\left(k-\bar{\beta} e^{i \theta}\right) P^{\prime}\left(e^{i \theta}\right)\right| .
$$

This implies

$$
\left|n P(z)+(\beta k-z) P^{\prime}(z)\right| \leqslant\left|n \bar{\beta} P(z)+(k-\bar{\beta} z) P^{\prime}(z)\right|, \quad \text { for } \quad|z|=1,
$$

which gives with the help of (24) that

$$
\begin{equation*}
\left|D_{\beta k} P(z)\right| \leqslant k\left|D_{\beta / k} Q(z)\right|, \quad \text { for } \quad|z|=1 . \tag{26}
\end{equation*}
$$

Now from Lemmas 2 and 3, it easily follows that for every complex number δ we have

$$
\left|D_{\delta} P(z)\right|+\left|D_{\delta} Q(z)\right| \leqslant n(1+|\delta|), \quad \text { for } \quad|z|=1 .
$$

We take in particular $\delta=\beta / k$ and from (26) we get

$$
\begin{aligned}
(1+k)\left|D_{\beta} P(z)\right| & =\left|D_{\beta k} P(z)+k D_{\beta / k} P(z)\right| \\
& \leqslant\left|D_{\beta k} P(z)\right|+k\left|D_{\beta / k} P(z)\right| \\
& \leqslant k\left\{\left|D_{\beta / k} Q(z)\right|+\left|D_{\beta / k} P(z)\right|\right\} \\
& \leqslant k n(1+|\beta| / k) \\
& =n(k+|\beta|), \quad \text { for } \quad|z|=1,
\end{aligned}
$$

which immediately gives (11) and Theorem 3 is proved.
Remark 2. If $P(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ is a polynomial of degree n and $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then by Lemma 3, with $k=1$, we get

$$
\left|D_{\alpha} P(z)\right|_{z=0}+\left|D_{\alpha} Q(z)\right|_{z=0} \leqslant n \operatorname{Max}_{|z|=1}|P(z)|
$$

for every α with $|\alpha| \leqslant 1$. This implies

$$
\left|n P(0)+\alpha P^{\prime}(0)\right|+\left|n Q(0)+\alpha Q^{\prime}(0)\right| \leqslant n \underset{|z|=1}{\operatorname{Max}}|P(z)|
$$

Equivalently,

$$
\begin{equation*}
\left|n a_{0}+\alpha a_{1}\right|+\left|n a_{n}+\bar{\alpha} a_{n-1}\right|<n \underset{|z|=1}{\operatorname{Max}}|P(z)| \tag{27}
\end{equation*}
$$

for every α with $|\alpha| \leqslant 1$. For $\alpha=0$, (27) reduces to a result due to C. Visser [11].

Acknowledgment

I thank the referee for his useful suggestions.

References

1. A. Aziz, A new proof of Laguerre's theorem about the zeros of polynomials, Bull. Austral. Math. Soc. 33 (1986), 131-138.
2. A. Aziz and Q. G. Mohammad, Simple proof of a theorem of Erdös and Lax, Proc. Amer. Math. Soc. 80 (1980), 119-122.
3. N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
4. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S.) 50 (1944), 509-513.
5. M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. (2) 1 (1969), 57-60.
6. M. Marden, "Geometry of Polynomials," 2nd ed., Mathematical Surveys, No. 3, Amer. Math. Soc., Providence, RI, 1966.
7. G. Pólya and G. Szegö, "Problems and Theorems in Analysis," Vol. I, Springer-Verlag, New York, 1972.
8. M. Riesz, Uber einen Satz des Herrn Serge Bernstein, Acta Math. 40 (1916), 337-347.
9. A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. (N.S.) 47 (1941), 565-579.
10. E. B. Saff and T. Sheil-Small, Coefficient and integral mean estimates for algebraic and trigonometric polynomials with restricted zeros, J. London Math. Soc. (2) 9 (1974), 16-22.
11. C. Visser, A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. Ser. A 47 (1945), 276-281.
